Loading the player...


INFO:
Linear algebraic differential equation (in one variable) depending on a small parameter produces a spectral curve, which is a point in the base of a Hitchin integrable system. Gaiotto, Moore and Neitzke discovered a remarkable structure on the Hitchin base, consisting in certain integer numbers (BPS counting) associated with cycles on the spectral curves, and satisfying universal wall-crossing constraint at hypersurfaces of discontinuity. For a generic spectral curve the wall-crossing structure leads to a preferred coordinate system on the Betti moduli space (a.k.a. the character variety, or the moduli space of monodromy data). I
Wall-crossing and geometry at infinity of Betti moduli spaces - TIB AV-Portal